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Surface Tension from Finite-Volume Vacuum 
Tunneling in the 3D Ising Model 

Hildegard Meyer-Ortmanns ~'2 and Thomas Trappenberg 1'3 

Received 

We measure the surface tension ~r in the broken phase of the 3D Ising model 
at a temperature T =  0.955Tc with two different methods which are taken from 
quan tum field theory in finite volumes. Both methods rely on finite-size effects 
close to the phase transition. The first one measures cr from the size dependence  
of the vacuum tunneling energy, which is determined by the decay of a correla- 
tion, giving ~ = 0.030. The second one extracts cr from the size dependence of the 
rate of flip events and its corresponding correlation time. It leads to a = 0.027. 
Both values agree reasonably with other calculations. 

KEY WORDS: Finite; size analysis; spectrum calculations; field theoretical 
framework; Ising model; surface tension. 

1. I N T R O D U C T I O N  

A careful analysis of finite-size effects was recently made in the four-dimen- 
sional Ising model in the context of particle physics. (*'2) Beside its role as 
a toy model for testing numerical and analytical methods, this Ising model 
is considered in the context of the Salam-Weinberg theory of electroweak 
interactions. It is the (2 = oe) limit of the one-component @4 theory, where 
2 is the bare scalar coupling constant. The ~4 theory is an analogue to the 
scalar sector of the Salam-Weinberg theory in the sense that the scalar 
sector is thought to be well approximated by a four-component ~4 theory 
with a lattice cutoff A = a - l ,  a being the lattice constant. The ~4 theory 
was investigated by perturbative as well as nonperturbative analytical 
methods in refs. 3 and 4. Results from high-temperature expansions were 
used as input to determine the flow of the renormalized scalar self-coupling 
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gR and the renormalized mass mR as functions of 2 and the hopping 
parameter ~c. It was one of the main purposes of ref. 2 to check the analyti- 
cal results of ref. 4 in the Ising limit by means of Monte Carlo 
measurements of gR and m R. To assure the reliability of the Monte Carlo 
results, it was important to separate the finite-size effects and trace back 
their different origin. 

One type of finite-size effect which occurs in both phases of the 4D 
Ising model is due to the field-theoretic vacuum polarization in a finite 
volume. A second type, the one we will also concentrate on in this paper, 
is specific for the broken phase. It can be described as a transition between 
the two degenerate minima of the effective potential and is observed in 
finite volumes close to the phase transition. In the language of quantum 
field theory, it is a tunneling between two ground states, or vacua of the 
system. This "vacuum tunneling" leads to flips of the sign of spin averages 
and drives the expectation value of the magnetization to zero when a 
sufficiently large number of Monte Carlo sweeps is made. 

Masses and energies of particles correspond to excitations of the 
ground state in the infinite-volume limit, which is twice degenerated in the 
broken phase of the Ising model. They are inverses of different bulk 
correlation lengths ~b" However, in a finite volume, due to tunneling 
phenomena, the degeneracy of these states is lifted in the Ising model; the 
spectrum consists of states which are even or odd with respect to the 
simultaneous flip of signs of all spins. In order to interpret the energies 
obtained by Monte Carlo simulations in a finite volume as the masses of 
(multi) particle states, it was ensured in ref. 2 by a suitable choice of 
parameters that this finite-volume energy splitting of the spectrum is 
already negligibly small, so that the results for the masses are reliable. 

In this paper we consider the Ising model in three dimensions. Concer- 
ning the methods, we proceed along the same lines as in refs. 1, 2, doing 
so, however, in a different spirit. Having in mind that tunneling events 
correspond to the creation of interfaces in finite boxes, we concentrate on 
a parameter range (i.e., on an interval of temperature T) in the broken 
phase where tunneling dominates the finite-volume effects. Then we use a 
finite-size analysis to extract the surface tension a. The results agree 
reasonably well with other Monte Carlo estimates. (5'6) We also determine 
some higher excitations of the spectrum. Our methods should be applied 
when one is limited to lattices of small or intermediate size (limited in view 
of reasonable computer times). On large enough lattices where finite-size 
effects are strongly suppressed other methods may be superior to ours (see, 
e.g., ref. 5). 

In Sections 2.1 and 2.3 we outline two methods, later to be called the 
static and the dynamical methods, respectively, which we use to calculate 
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the surface tension. Roughly speaking, in the static method we count flips 
of "magnetization" in space, i.e., we measure the average length ~L of 
magnetization domains in configurations. We choose an L2x Lz "cylinder" 
geometry with Lz >> L, where interfaces build up preferably perpendicular 
to the cylinder axis. The quantity which determines ~ here will be the 
vacuum tunneling energy Eoa. In the dynamical method we count flips of 
the total "magnetization" in time, i.e., we count flips occurring during the 
MC simulation (cf. Fig. 1 ). This time the "magnetization" refers to L3-cubic 
lattices; a will be related to a correlation time zL- Since we switch from a 
global (cluster) to a local (Metropolis) algorithm between the static 
and the dynamical method, we discuss the choice of the algorithm in 
Section 2.2. In Section 3 we give details about the numerical simulations 
and conclude with the results in Section 4. 

To make the paper more self-contained in the context of statistical 
physics, we summarize our methods in some detail, although they were 
described already in refs. 1 and 2. 

2. S U R F A C E  T E N S I O N  A N D  H I G H E R  E X C I T A T I O N S  
OF T H E  S P E C T R U M  

The Sur face  Tension.  The surface tension ~ can be defined as the 
difference between the free energy densities of two large boxes with periodic 
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Fig .  1. Flip events of the "magnetization of a given configuration" in time. The time is 
measured in the number of Monte Carlo iterations. The "magnetization" refers to a cubic box 
of size 10 x 10 x 10. 
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(p.b.c.) and antiperiodic boundary conditions (a.b.c.), respectively. More 
precisely, consider a cubic lattice with cylindrical geometry, where the 
cylinder axis is in the z direction, and define 

O" : =  ( F a . b . c .  - -  Fp.b.c.)/A (1) 

where A = L 2 is the cross-section area spanned in the x, y directions. Here 
Fa.b.o. denotes the free energy of the box with a.b.c, in the z direction and 
p.b.c, in the x, y directions. Fp .b .c .  is the free energy of the box with p.b.c. 
in all directions. Throughout  this paper ~ should always be understood in 
units of kT.  

The first way we will extract o from Monte Carlo simulations is based 
on the following relation: o as defined in (1) controlls the L dependence of 
a certain correlation length ~L, (7~ where L is the linear extension of the 
cross-section area. ~L is the inverse of the vacuum energy splitting Eoa in 
the broken phase; asymptotically the z-slice spin correlation decays as 
exp ( -z /~L)  in the z direction. Eoa determines the tunneling amplitudes 
between the states 1+ ) and [ -  ) (which become the degenerate ground 
states in the infinite-volume limit). The relation between ~L and o which we 
use to determine o is given by 

Eoa 1 ~ ~L = C ( T )  eLza(T) (2) 

Equation (2) was obtained within a semiclassical approximation in ref. 8. 
The missing L dependence of the prefactor C(T) in d =  3 was taken as an 
Ansatz in ref. 8, and we will use it, too, when we determine o from (2). The 
L dependence of a itself is expected to be exponentially suppressed for large 
L (cf. ref. 9 for the case of four dimensions); therefore, we will neglect it 
here. 

Before we go into details about the measurement of Eoa, we sum- 
marize the second (so-called dynamical) method, from which we have 
extracted o in an alternative way. Yet another correlation, the correlation 
time rL in the MC updating of the system, is determined by the surface 
tension. Using an approach based on the Langevin equation, it was shown 
in ref. 10 that for Ising-like systems a is related to rL according to 

~L oc e 2~r)L2, (3) 

In our dynamical method (see Section 2.3 for detailed definitions), we have 
counted so-called flip events, where the inverse of the flip rate fM defines a 
correlation time zfu. We will show that r ru is proportional to rL to a good 
approximation within the Metropolis algorithm, such that the counting of 
flip events can serve as a measurement of a via (3). The factor 2 in (3) can 
be made plausible from the need for at least two interfaces to allow the 
average spin to flip. 
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2.1. The Vacuum Tunneling Energy and 
Higher Excitations of the Spectrum 

We consider the three-dimensional Ising model on a cubic lattice with 
linear extensions Lx ,  Ly,  and Lz. For the static method we choose Lx = 
Ly = L and Lz >> L to impose a cylindrical geometry. The action is given by 

3 

S = - 2 ~ c  ~ y '  ~b~b~+o (4) 
x=(x , y , z )  / * = 1  

The sums run over pairs of nearest neighbors (x, x + !i), where # denotes 
the direction of links. Here ~b ~ { _+ 1 }, x is the hopping parameter, which is 
related to the temperature T by 

J 
2~c = - -  (5) 

k T  

where J denotes the standard coupling constant, and k is the Boltzmann 
constant. So the symmetry-breaking transition occurs at ~c=~cc= 
0.110827... We will choose ~c close to ~c c such that we are in the broken 
phase below the roughening transition at ~c R = 0.20s. 

To fix our notation, we express the partition function through the 
transfer matrix in the z direction, 

Z = t r  e-nC~= 1 - - } - e - E ~  . . .  (6) 

The spectrum splits up into even (s) and odd (a) eigenvalues Enj, n = O, 1, 
2 ..... j =  s, a. The corresponding states are denoted by In,) and ]na), n = O, 
1, 2 .... For example, the first excited state t0a) in terms of the infinite- 
volume ground states l +  ) and [ -  ) is given by 

1 
10a> = 7 ( 1 +  ) - l -  )) (7) 

corresponding to an energy level Eoo. The energy determines the vacuum 
tunneling amplitude. It gives the vacuum energy splitting between the 
degerate ground states in the broken phase of the finite volume, when the 
ground-state energy Eos is normalized to zero. When the energy splitting 
also for the higher energy levels approaches zero for large enough volumes, 
we interpret E.s and E~  as n-particle thresholds within the context of 
particle physics. (1,2) 

We extract the energies E.j from decays of correlation functions, which 
are constructed in the following way. Denote a z-slice spin average by S(z) ,  

S(z) -~  ~ ~(x, y, z) (8) 
X, y 
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Then the z-slice correlation of S in the transfer matrix representation is 
given by 

(S(O) S(z) ) =- [Tr[S(O) e -zHS(z)e -(L~-zlH]/Z 

= [l(Osl S(z)I%)12 (e-e~ E~ z)) 

+ [(Os[ S( z ) I l a ) [  2 ( e - E ' ~ + e  EI~(Lz ~)) 

+ (9(e -Ellz, e EIs(L~ -'))]/Z (9) 

A similar expression can be derived for the connected two-point function 
of squared spin averages 

( s2(0)  S 2 ( z ) ) c -  ( s2(0)  s2 (z ) )  - ( s ~ ( 0 ) )  2 (10) 

which we have expanded including terms of (9(e-e2"z). The energies Eni can 
be obtained from (9) and (10) in several ways. The first possibility, which 
we have only used for consistency checks, we explain with an example. To 
get a constant m out of a one-exponential Ansatz (corrected by an 
exponential function due to the p.b.c.) 

F(z) = const �9 (e mz _~ e-m(L~- z)) (11 ) 

consider ratios of F for suitable values of z, such that it can be solved for 
m. In our example F ( z = L z / 3 ) / F ( z =  Lz/2)  would be a good choice. The 
values for Enj derived in this way we later call effective energies. They will 
be used to calculate the statistical errors by means of the binning method 
which will be briefly discussed below. 

Another possibility is to consider (S (O)S (z ) )  and ($ 2 (0 )S 2 (z ) ) c  as 
a function of z and extract E~j from a fit. We used the following Ans/itze 
for the two-exponential fits: 

( S(O) S(z)  ) = cl(e -a~ + e -a~ z)) 

+ c2(e ~z + e-~l(L~-z)) (12) 

($2(0)  S2(z) )c = c3 + c4(e ~j~ + e ~(L~- ~)) 

+ cs(e ,2z+ e ~2(L.,-~)) (13) 

where the constants c~,..., c5, ao, a~, s~, and s2 were determined in the fits. 
Then they were related to the energies and matrix elements of the transfer 
matrix representation. 

This way of proceeding is more reliable than the first one, when we are 
able to follow the decay of the correlations over a long distance. To do so, 
the signal-to-noise ratio has to be optimized. Therefore we chose the 
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Swendsen-Wang cluster algorithm (HI and replaced the spin variables ~b(x) 
entering the representation of ( . . . )  by cluster variables no,. To explain 
what we mean by that, we spend a few lines on the algorithm. 

2.2. Choice of the Algorithm 

As a nonlocal upgrading procedure we chose the Swendsen-Wang 
cluster algorithm. It proceeds in the following steps. To a given spin con- 
figuration {~bx}~ a bond configuration {Kx~} is associated, where parallel 
neighboring spins are connected by a bond according to a probability 
(1 - e  4~). Clusters ci are sets of neighbors which are connected by bonds. 
A cluster configuration {n~.,} can be characterized by the number of sites nc, 
belonging to the cluster c with label i. The next step in the algorithm is to 
flip all spins of a cluster with probability 1/2 to obtain in this way the next 
spin configuration {~bx }2. Our external magnetic field is zero. 

We have expressed our correlations (S (0 )S(z ) )  and ($2(0)S2(z))~. 
in terms of cluster variables nc,(z), where n~,(z) denotes the number of sites 
belonging to the cluster ci, here restricted to a z = const slice. For further 
details we refer to ref. 2. 

Recall that on the way to equilibrium the Swendsen-Wang algorithm 
strongly influences the physics of tunneling phenomena, when it enforces 
flips of large clusters of spins. Therefore, when we are interested in measuring 
rates of sign flips of certain magnetizations in the finite volume (as we are 
going to describe in the next section), we might be forced to go back to the 
local algorithm to get a nontrivial result. 

2.3. The Dynamical Method, Flip Rates of Average Spins 

As in ref. 2, we define the flip rate of average spins in the following 
way. The "average spin" M is defined as 

1 1 
m(tk ) :=- -  ~ go~ ~ @{t}(x) (14) 

t• t~Bin ( t k  ) x = ( x , y , z )  

where t labels the configurations belonging to a bin k of length t~ in time. 
We avoid calling this quantity "magnetization," since it should not be 
confused with the magnetization in the infinite-volume limit. For a possible 
definition of "magnetization" in a finite volume we refer to ref. 1. The flip 
rate fM is defined as the number of flip events in time, where "time" is 
measured in the number of iterations, 

# flip events 
fM --  (15) 

# iterations 
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We have normalized fM to 100,000 iterations. To indicate the dependence 
on the algorithm, we use the index M, where M stands for "Metropolis." 
Finally, a flip event is a change in the sign of M(tk). 

There is an ambiguity in the decision of which changes of sign of 
M(tk) should be interpreted as the tunneling events in which we are 
interested. However, as was observed in refs. 2 and 12, for a certain range 
of bin lengths tk the values for fM are quite independent of t~, forming a 
plateau. We interpret the value of fM at the plateau as the flip rate. The 
correlation time rfM defined as f~ t  1 is proportional to the relaxation time 
rE, given by (3). Therefore we measured the surface tension in the dynami- 
cal method according to 

1 1 (/M)2 (16) 
o-a = ~ (Ll2 _ L2 ) In (fM)1 

To get resonable rates of flip events in time, we used a cubic L 3 geometry 
for the lattice; L 1 and L 2 denote the linear extensions of different lattice 
volumes. 

To point out that the proportionality between vfM and vL depends on 
the choice of the algorithm, we also defined tentatively an average spin for 
the Swendsen-Wang algorithm. Let nmax denote the number of sites in the 
maximal cluster c . . . .  ~b(Cma• being a representative spin of that cluster. 
Then an "average spin" M can be defined as 

1 Fnmax ]{t} 
:= - -  ~' L Vol sgn ~(Cmax) (17) 

lk  te {Bin(tk)} 

The notation is the same as in (14). Again f,. is defined as the number of 
flips in the sign of 3~ during 100,000 iterations. Using a Swendsen-Wang 
algorithm, the counting of flip events according to this definition would 
just provide a test on the random number generator. When we used the 
same definition for ~r, but changed the algorithm in the sense of ref. 13, i.e., 
keeping the spin orientation of the maximal cluster and choosing the spin 
orientation of the remaining clusters again ~ la Swendsen and Wang with 
probability 1/2, then the flip rate still seemed to obey an exponential law, 
but the value of ~ disagreed by 30% with our value for cra and should not 
be taken seriously. Such a result is not surprising, since the dynamics which 
determines the approach to equilibrium depends on the algorithm and 
might interact with finite-size phenomena. 

3. N U M E R I C A L  S I M U L A T I O N S  

Choice of the Temperature. After a series of short runs we 
found a value of ~c (~=0.116, corresponding to T=0.955Tc)  which was 
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suitable in the sense that both of our methods were applicable within 
reasonable computer times. If • is too large, i.e., if we we are deeply in the 
broken phase, the tunneling events are rare, the signal of the tunneling 
energy Eo, is of the order of the statistical noise, and the energy splitting 
Ela -- El, shrinks to zero. On the other hand, if ~ is too close to the critical 
point, i.e., the bulk correlation length ~ is no longer small compared to 
the lattice size (~b ~ L would be desirable), finite-size effects due to the 
periodicity of the lattice will be strong, which are not specific for the 
broken phase. Also, the equilibration of the sample would suffer from 
critical slowing down. 

Simulat ions in the Stat ic  Method .  The simulations for the 
static method using the cluster algorithm were made on cylindrical lattices 
of size L 2 x 120, where L varied from 8 to 14. After discarding the first 1000 
sweeps for equilibration, we made 200,000 sweeps per site. 

We have measured the correlations (SoSz)  and 2 2 ( S o S z )  c up to 
distances 60. Eoa and Ela were determined from a two-exponential fit of 
(SoSz)  according to (12); a 0 and al were identified with Eoa and EI~, 
respectively. In Fig. 2 an example is shown for L = 10. To our surprise we 
had to use a two-exponential fit also for 2 2 ( S o S z )  ~, cf. (13), where sl ,  s2 
were identified with E~,, E2,, respectively. (In the four-dimensional Ising 
model the E2~ excitation did not show up in comparable runs. (2) 

Since now we are mainly interested in extracting the surface tension, 
we list the values for Eo~ obtained from the fits for several values of L in 
the second column of Table I; cf. also Fig. 3. 
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i i i i i i L 
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z 

Two-exponetinal fit of the z-slice correlation (SoSz) for 60 values of the z-slice Fig. 2. 
distance z. The exponents give E0a, the tunneling energy, and Ela, the higher excitation. The 
z = 0  value of (SoS~) was excluded for the fit. 
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Table I. Tunneling Energies E0a and 
Number of Flip Events fM and fc Normalized 
to 105 Iterations in the Metropolis and the 

Modified Cluster Algorithm for Several 
Choices of Linear Extensions L 

L E0o /M L 

8 0.0393(1) 360(30) 
10 0.01316(8) 28.7(6) 96(5) 
12 0.00345(7) 2.6(2) 16(2) 
14 0.00080(6) 0.16(1) - -  

The indicated purely statistical errors in the last digits were obtained 
in the following way. The total number of configurations was subdivided 
into bins of length 2" ( neN) .  For  a given observable and a given bin 
length, the errors of bin averages were calculated in the standard way. 
When it happens that the error becomes independent of the bin length 
for some range of bin lengths, it is taken as the statistical error of the 
observable. In this way we got a statistical error of the correlations, which 
enter the fit for E0a, and for the effective energies Eoa, El, ,  Ela, which were 
calculated as indicated above. The errors of the values for Eoa in Table I 
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Fig. 3. The L dependence of the tunneling energy E0a and the flip event rates fM and ft. On 
the ordinate we have plotted In Eo, + 10, �89 In f i  + 5, and �89 In fc + 5. The slope of the curves 
for In Eoa and 1 In fM yields a, and aa, respectively. The slope of �89 In fc + 5 differs significantly 
from the others. It would lead to a value for 5 of 0.019. 
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are the statistical errors of the effective energies. We have checked for con- 
sistency that these errors are compatible with the errors involved in the fit 
procedure (statistical errors for (SoSz) and dependence on the number of 
fitted points). 

Simulations in the Dynamical Method.  For this method the 
simulations were made on cubic lattices of volume L 3 between 83 and 143. 
Here we discarded the first 10,000 sweeps for equilibration. For the 
upgrading procedure we used the standard Metropolis algorithm in a 
vectorized form. To collect enough statistics for the flip rate, we made up 
t o  5 • 10 6 sweeps, depending on L. 

The flip rates fM for the Metropolis algorithm from which aa was 
calculated later are shown in column 3 of Table I. In column 4 the rates f+. 
within the modified cluster algorithm are displayed, although as a way to 
find a they should be disregarded. The errors in fM(fc) as indicated for 
L = 8, 10, 12 result from the ambiguity in the choice tK of bin length, which 
was taken to be representative to decide whether a sign flip of the average 
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Fig.  4. Flip event rate fM as a function of n, where the bin length tk is given by tk = 2 n for 
three different volumes after ( + ) 5 ,000 ,000 sweeps for L = 14, ( I )  500,000 sweeps for L = 12, 

( , )  100,000 sweeps for L = 10. For smaller volumes the plateau in fM is less pronounced. 
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spin should be considered as a flip event or not. Figure 4 shows that the 
plateau in f( tD is less pronounced for smaller volumes; therefore, the 
corresponding errors involved in the choice of t~ dominated the statistical 
ones. Conversely, for L = 14 the statistical error of +0.01 forfM was larger. 
It was obtained from five runs of about 10 6 sweeps each. 

4. RESULTS 

The Surface Tension. For the surface tension a, in units of kT 
extracted from the vacuum tunneling energy Eo. within the static method 
we obtained 

G =0.0303 (18) 

The values of Eou(L) were taken from the fits of the correlations 
<S(O) S(z)). Observation of the rate of flip events within the dynamical 
method led to 

ad = 0.0273 (19) 

The statistical errors for both values are of the order of 10 4. Therefore a, 
and ad do not agree within the statistical errors. We take this as an indica- 
tion that we are not deeply enough in the asymptotic region of large L, 
where the formulas (2) and (3) should hold. The exponent o'L 2 w a s  still of 
the order of 6, which is not very large. 

The value of G is 10% lower than the value given by Mort, (5) who gets 
a = 0.0328 extrapolated from T ~ T c. It is about 30% larger than the value 
of Binder (61 (a = 0.0218). ad differs by 20% from Binder's value. 

Usually, flip events in the context of particle physics are just 
considered as disturbing artifacts of the finite volume which should be 
suppressed. This point of view can be also found in papers of statistical 
physics. (14) As is demonstrated by our results, these "artifacts" contain 
valuable information on physical quantities when they are analyzed with 
respect to their finite-size scaling behavior. We find it amazing that the 
surface tension which also enters universal ratios of binary mixtures can 
be estimated from counting these flip events from plots like Fig. 1. 
Nevertheless, we consider the dynamical method more as a heuristic one 
(due to the ambiguity in what is called a flip event and a possible influence 
of the algorithm). 

Higher Excitations. The L dependence of Els, Ela, and E~s (as 
well as Eoa) as they were obtained from the two-exponential fits are shown 
in Fig. 5. As expected, Eo~ and AE, = Els -E1a decrease with increasing L; 
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Fig. 5. The L dependence of the energies E,j (n = 0, 1, 2; j =  s, a) at K = 0.116. The Enj are 
taken from the corresponding z-slice-correlation fits. 

they should vanish in the infinite-volume limit. We remark that E0, should 
not  be misinterpreted as the one-particle mass in the broken phase, which 
corresponds to Els and Ela provided AEI ~ O. Furthermore,  for a volume 
large enough that  both AEI and AE2 are almost  zero, Els---E~a and 
Ezs -~ E2, would determine the scattering length of two particles in the 
broken phase. (15) 

In the context of statistical physics we speculate that  the higher excita- 
tions Els , Ela might  be related to the surface stiffness coefficient, (16) since 
our  correlations in the z direction should be sensitive to excitations 
perpendicular  to the interfaces spanned in the x, y directions of the box. 

To estimate the systematic errors involved in both  of our  methods,  it 
would be useful to try them also in two dimensions where exact results are 
available. 
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